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ABSTRACT

A well-known challenge associated with the multi-label classification problem is modelling dependen-
cies between labels. Most attempts at modelling label dependencies focus on co-occurrences, ignoring
the valuable information that can be extracted by detecting label subsets that rarely occur together.
For example, consider customer product reviews; a product probably would not simultaneously be
tagged by both “recommended” (i.e., reviewer is happy and recommends the product) and “urgent”
(i.e., the review suggests immediate action to remedy an unsatisfactory experience). Aside from the
consideration of positive and negative dependencies, the direction of a relationship should also be
considered. For a multi-label image classification problem, the “ship” and “sea” labels have an obvi-
ous dependency, but the presence of the former implies the latter much more strongly than the other
way around. These examples motivate the modelling of multiple types of bi-directional relationships
between labels. In this paper, we propose a novel method, entitled Multi-relation Message Passing
(MrMP), for the multi-label classification problem. Experiments on benchmark multi-label text
classification datasets show that the MrMP module yields similar or superior performance compared
to state-of-the-art methods. The approach imposes only minor additional computational and memory
overheads.

Keywords multi-label classification · text classification · multi-relation GNNs

1 Introduction

Multi-label classification involves selecting the correct subset of tags for each instance from the available label set.
There are numerous real world applications ranging from image annotation to document categorization [1]. A naive
approach consists of converting the problem into multiple binary classification problems. This is the binary relevance
(BR) method [2]. A critical difference between multi-label and multi-class classification is that the class values are
not mutually exclusive in multi-label learning. Usually, we anticipate that there are dependencies between the labels,
and there are often multiple different types of relationships. Incorporating and learning the dependency relationships
between labels during the learning process has an appealing potential of boosting predictive performance.

The simplest approach that considers label dependencies is the label powerset (LP) method [3]. This involves converting
the problem to multi-class classification by treating each possible combination of labels as a separate class, i.e., a
multi-label problem with L possible labels would be converted to a multi-class problem with 2L classes. While the LP
method enables us to make use of powerful multi-class classification methods, it suffers from scaling to problems with

∗Citation: Ozmen, M. and Zhang, H. and Wang, P. and Coates, M. Multi-relation message passing for multi-label text classification.
Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP), 2022.

ar
X

iv
:2

20
2.

04
84

4v
1 

 [
cs

.L
G

] 
 1

0 
Fe

b 
20

22



Multi-relation Message Passing for Multi-label Text Classification

a large number of labels. Aside from the LP method, the existing methods that account for label dependencies construct
the relationships between labels by assessing co-occurrences in the training data [4, 5, 6]. Co-occurrences represent a
pulling type of relationship between labels (labels that often appear together should be strongly encouraged to appear
together in predictions). However, focusing solely on frequent co-occurrences ignores other valuable information.
In particular, there should be a distinction between labels that occasionally appear together and those that never
appear together. Aside from statistical label dependencies determined by co-occurrence (or the lack thereof), there are
other valuable relations that should be considered when designing a classifier. These include semantic relations (e.g.,
synonyms, plural forms) or pre-defined structural relations (e.g., hierarchical category relations).

In this paper, we propose a novel method, called Multi-relation Message Passing (MrMP), which employs a Composi-
tional Graph Convolutional Network (CompGCN) [7] to model multiple bi-directional relationships between labels.
We make the following contributions:

1. We design a multi-relation label embedding module that can be integrated into most encoder-decoder type
neural network architectures to account for the dependencies between labels.

2. We propose a simple and efficient method to extract statistically significant pulling and pushing relations
between labels.

3. We design a Transformer [8] based message passing network for the multi-label text classification problem
considering two types of statistical relations between labels.

4. We perform experiments on benchmark multi-label text classification datasets, comparing with classical and
state-of-the-art baselines, to demonstrate the efficacy of our method.

2 Related Work

There have been multiple attempts in the literature to capture label dependencies for multi-label classification problems.
Probabilistic classifier chains (PCC) stack a sequence of binary classifiers and predict one label at a time conditioned
on previously predicted labels [9, 10, 11]. PCC based methods decompose the joint probability of observing label
subsets into a product of conditional probabilities. The computational complexity therefore increases exponentially with
the number of possible labels. To reduce the length of the classifier chain and the corresponding model complexity, [12]
suggests ML-RNN, a sequence-to-sequence architecture that focuses on predicting positive labels only. PCC models can
suffer from the sub-optimal pre-defined label ordering. Training and inference time is an issue due to the inability to
harness parallel computation.

In latent embedding learning methods the inputs and outputs are projected into a shared latent space [13, 14, 15]. An
effective recent method is the Multivariate Probit Variational AutoEncoder (MPVAE) [6]. This maps features and labels
to probabilistic subspaces and uses the Multivariate Probit (MP) model to make predictions by sampling from these
subspaces. A shared covariance matrix is learned to capture label dependencies. However, the embedded learning
methods fail to incorporate prior knowledge about label structures.

Graph-based methods for capturing label dependencies have shown promising performance [4, 16]. [4] use Graph
Convolutional Networks (GCNs) [17] to map label representations to inter-dependent object classifiers for the multi-label
image classification task. In these methods, a label graph is typically built based on label co-occurrence, with nodes
corresponding to labels and edges corresponding to how two labels interact. The label graph can be combined with
graph neural networks to enable the interactive learning of features and label embeddings. [5] and [18] propose starting
with a simple fully-connected graph or a co-occurrence label graph. A Message Passing Neural Network (MPNN)
then passes messages among label embeddings and features to enable learning of high order label correlation structure
that is conditioned on the features. Due to the greater flexibility offered by MPNNs compared to GCNs, these models
achieve state-of-the-art performance on many benchmark datasets. However, all of the above graph methods use simple
undirected graphs, neglecting the richness of information present in the joint empirical probability distribution of the
labels, such as whether the occurrence of label A encourages or suppresses the occurrence of label B, relative to the
marginal distribution of the latter.

This work proposes the construction of a multi-relational label graph and uses multi-relational graph neural networks
to more comprehensively capture the information present in the joint empirical probability distribution of the labels.
The inclusion of the richer information in the model can potentially improve performance for multi-label classification
problems.
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Figure 1: Overview of MrMP. The encoder first applies positional embedding on the input sequence x. The output
then passes through encoder-self attention layers of MHA and a PFF to obtain the input word embeddings z. The
decoder initializes label v0 and relation embeddings r and composes them together using a function φ to prepare the
multi-relation layers’ input. The layers of the multi-relation module aggregate the label embeddings, updated by pulling
and pushing relation sets, and compose them with updated relation embeddings recursively to feed the next layer. The
label node embeddings vT are obtained by applying a ReLU on the final layer’s output. The encoder-decoder attention
layers of MHA and PFF prepare label-specific feature embeddings u. f is obtained by element-wise product of v and
u. The label predictions ŷ are obtained after voting on f caused by multiple layers of encoder output and applying a
sigmoid to normalize.

3 Multi-relation Message Passing (MrMP)

For the multi-label classification problem, the advantage of using Message Passing Neural Networks (MPNNs) arises
due to the structural power of graphs for representing global label dependencies. The use of RNN based architectures
has two often overlooked advantages. The ordering in the prediction path allows the architecture to focus on the next
most probable label and ignore irrelevant labels. Moreover, the ordering models dependencies in a directed manner,
albeit in only one direction. Our proposed method strives to combine these advantages. The proposed model contains
an encoder for extracting features and a decoder for predicting labels. Although the method can be applied to a variety
of types of input datasets, we focus on the input type of text to provide a more concrete description.

3.1 Notation and Preliminaries

We denote a sample by a sequence of words x which is composed of N components x = (x1, x2, ..., xN ) where N is
the length of sequence. Associated with each sample is its corresponding label set, represented as a binary vector
y = (y1, y2, . . . , yL), where yi ∈ {0, 1} indicates whether label i appears. We use a training set (xj ,yj)j∈T to learn
the parameters of a predictive model. The model then takes x as an input and outputs ŷ = {ŷ1, ŷ2, ..., ŷL} where
0 ≤ ŷi ≤ 1 is the estimated probability that label i appears. We denote input feature embeddings by z = {z1, ..., zS}
and label specific feature embeddings by u = {u1, ..., uL}. The estimations are evaluated by mean binary cross entropy
Lbce(y, ŷ) =

1
L

∑L
i=1−yi log(ŷi) + (1− yi) log(1− ŷi).

Multi-head Attention (MHA) is performed by concatenating parallel heads of scaled dot-product attention. The
main motivation is to prevent destabilization during training by bad initialization of learnable weights. The inputs are
generalized as Q for “Query", K for “Keys", and V for “Value". Scaled-dot product attention is formulated as follows:

Attention(Q,K,V ) = softmax
(
QKT

√
dk

)
V . (1)
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Positionwise Feed Forward (PFF) networks are fully connected feed-forward network layers which consist of two
linear transformations, with a ReLU activation between them:

PFF(x) = max(0,xW1 + b1)W2 + b2 . (2)

3.2 Proposed Model

We consider two types of statistical relations between labels; pulling and pushing. Let a relation graph be represented
by adjacency matrices A+ and A− for pulling and pushing edges, respectively. The method used to calculate the
corresponding adjacency matrices will be explained later. To properly utilize the multi-relational adjacency matrices
obtained, we propose a Multi-relation Message Passing (MrMP) method. An overview of the model is provided in
Figure 1. In essence, it combines the ideas of LaMP [5] and CompGCN [7]. Assume that the input is a sequence
of tokens x = {x1, x2, ..., xN}. The encoder initializes input word embeddings and applies positional encoding if
the data type is sequential [8], then stacks several layers of self-attention to construct the sequential representation
of input at each layer, zl = {zl1, zl2, ..., zlS}. The decoder is composed of a label-relation module and a label-feature
module. The label-relation module is responsible for capturing the multi-relational dependencies among labels, while
the label-feature module extracts the most relevant features for each label.

The label-relation module initializes the label node embeddings and stacks CompGCN layers with pulling and pushing
relations. Let z+ and z− represent pulling and pushing relation embeddings, respectively. Let W+ and W− be trainable
weight matrices for pulling and pushing relations, respectively. At each layer of the label relation module the label
embeddings V l+1 = [vl+1

1 , vl+1
2 , ..., vl+1

L ] are updated based on the output from the previous layer V l as follows:

vl+1
i = f

( ∑
j∈N+(i)

W l
+φ(v

l
i, z

l
+) +

∑
j∈N−(i)

W l
−φ(v

l
i, z

l
−)

)
. (3)

Here the neighbourhoods for each relation, N+(i) and N−(i), include the original relations, inverse relations and self
loops. In our experiments we set φ(·, ·), the composition function that combines the label hidden state and the relation
hidden state, to be summation. In our case, since we also have an intuitive understanding of the relationship between
the two relations, we set the relation embeddings to be zl+ = −zl− at each layer. The relation embeddings are updated
at each layer by relation specific trainable parameters, zl+1

+ = Wrelz
l
+.

We use the final label embeddings V T as queries to extract label-specific features U based on the output from the
encoder. Since different labels may be most effectively determined by features at different layers, we extract label
specific features U l based on each zl, respectively. On a given decoder layer the label specific feature embeddings are
updated as follows:

ml
i = uli +

S∑
j=1

MHA(uli, z
l
j ;W

l
r), (4)

ul+1
i = ml

i + PFF(ml
i;Wr) , (5)

where u0i = vTi . Then, label prediction is performed based on each U l to produce f̂ l = diag(U l ∗ V T ) where ∗ stands
for element-wise multiplication. Finally, the ultimate prediction for class probabilities ŷ is determined by a voting,
ŷ =

∑
l f̂

l.

Calculating Label Relation Graphs. The conventional approach for calculation of the prior graph that represents the
relationship between labels involves estimating conditional probabilities based on co-occurrences in the training data.
LaMP (with prior) [5] uses a simpler method that forms an edge between two labels if they co-occur in any training
sample. We consider two types of statistical relations between labels: pulling and pushing. We first test the existence of
a relation based on occurrences for each label pair, and then decide whether that relation is pushing or pulling. That
is, given the presence of dependency between two labels, we hypothesize whether it corresponds to co-occurrence or
avoidance relation. For all label pairs i and j,

1. Perform a dependence test by setting null hypothesis as H0 : P (Lj = 1|Li = 1) 6= P (Lj = 1). We test this
via a chi-squared test statistic on a pairwise contingency table.

2. Determine type of relation: If the label pair passes the hypothesis test, the existence of label j significantly
depends on the existence of label i. The label pair is set to have a pulling edge if P (Lj = 1|Li = 1) >
P (Lj = 1), and a pushing edge otherwise.
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Table 1: Dataset Statistics

Dataset Input Type #Instances #Labels #Features Label Cardinality #Train #Valid #Test

Bibtex Binary vector 7,538 159 1,836 2.38 4,377 777 3,019
Bookmarks Binary vector 87,856 208 2,154 2.03 48,000 12,000 27,856
Delicious Binary vector 16,071 983 500 19.06 11,597 1,289 3,185

Reuters-21578 Sequential 10,789 90 23,662 1.23 6,993 487 2,515

Relational Loss Function. We use a combination of cross-entropy loss and a relation based label embedding distance
for training our model. Let the final label node embedding for label i be denoted by v̂i. The relation based label
embedding distance is formulated as follows:

Lrel(v̂i) = −
1

|N+(i)|
∑

j∈N+(i)

v̂i.v̂j

‖v̂i‖‖v̂j‖
+

1

|N−(i)|
∑

j∈N−(i)

v̂i.v̂j

‖v̂i‖‖v̂j‖
. (6)

4 Experiments

4.1 Datasets and Evaluation Metrics

Although the proposed method can be extended to different domains, currently we have experimented with 4 benchmark
multi-label text classification datasets. Bibtex, Bookmarks [19] and Delicious [20] involve automated tag suggestion for
entries from the BibSonomy social publication, the Bookmark sharing system, and for web pages from the del.ico.us
social bookmarking site, respectively. Reuters-21578 [21] is a collection of newswire stories. Our experiments cover a
range of dataset sizes between 7,538 and 804,410. The number of labels range between 90 and 983; and vocabulary
size ranges between 500 and 50,000. We use the same data splits as described in [5] for fair comparison. The dataset
details are provided in Table 1

The instance-based performance metrics we use to evaluate our method are example based F1 score (ebF1), and subset
accuracy (ACC). The label-based performance metrics are micro-averaged F1 score (miF1), and macro-averaged F1
score (maF1). Subset accuracy measures the fraction of times that an algorithm identifies the correct subset of labels for
each instance. The example-based F1 score is aggregated over samples and the macro-averaged F1 score over labels.
The micro-averaged F1 score takes the average of the F1 score weighted by the contribution of each label, and thus
takes label imbalance into account.

• Instance based: Let there are L number of labels and M number of samples, yi = (yi1, ..., yiL) and ŷi =
(ŷi1, ..., ŷiL) denote binary vector of ground-truth and predicted labels on sample i respectively.

– ACC = 1
M

∑M
i=1 I[yi = ŷi]

– ebF1 = 1
M

∑M
i=1

2
∑L

j=1 yij ŷij∑L
j=1 yij +

∑L
j=1 ŷij

• Label based: each label yj is treated as a separate binary classification problem (each label has its own
confusion matrix of true-positives (tp), false-positives (fp), true-negatives (tn), false-negatives (fn).)

– miF1 =

∑L
j=1 2tpj∑L

j=1 2tpj + fpj + fnj

– maF1 =
1

L

∑L
j=1

2tpj

2tpj+fpj+fnj

4.2 Baselines

In addition to state-of-art methods ML-RNN [12], LaMP [5], and MPVAE [6], we compare our algorithm to baseline
classifiers such as ML-KNN [22] and ML-ARAM [23]. ML-KNN finds the nearest examples to a test class by the k-
Nearest Neighbors algorithm and selects assigned labels using Bayesian inference. ML-ARAM use Adaptive Resonance
Theory (ART) based clustering and Bayesian inference to calculate label probabilities. The results for ML-KNN and
ML-ARAM are obtained by functions provided in the scikit-learn library [24]. For ML-RNN and LaMP we provide the
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Table 2: Experiment Results

Bibtex Bookmarks Delicious Reuters
ACC ebF1 maF1 miF1 ACC ebF1 maF1 miF1 ACC ebF1 maF1 miF1 ACC ebF1 maF1 miF1

ML-KNN 0.074 0.205 0.134 0.268 0.202 0.241 0.133 0.264 0.003 0.223 0.080 0.245 0.651 0.710 0.253 0.732
ML-ARAM 0.107 0.258 0.097 0.238 0.181 0.236 0.127 0.184 0.005 0.155 0.041 0.167 0.474 0.673 0.163 0.626
ML-RNN - - - - - - - - - - - - 0.828 0.894 0.457 0.858

LaMP 0.185 0.447 0.376 0.473 0.242 0.389 0.286 0.373 0.006 0.372 0.196 0.386 0.835 0.906 0.560 0.889
MPVAE 0.179 0.453 0.386 0.475 0.234 0.390 0.295 0.378 0.000 0.373 0.181 0.384 0.816 0.898 0.542 0.887
MrMP 0.199 0.460 0.393 0.481 0.251 0.397 0.293 0.384 0.007 0.377 0.199 0.391 0.844 0.914 0.591 0.893

% 7.46% 1.54% 1.74% 1.26% 3.63% 1.89% -0.70% 1.64% 15.12% 1.09% 1.42% 1.17% 1.04% 0.91% 5.60% 0.42%

results reported in the corresponding papers. For MPVAE we have reproduced the results in order to obtain performance
metrics for the datasets under study. We provide the reported result if it exists and is better than those we reproduced.2

4.3 Implementation Details

We follow [5] for setting the relevant hyperparameters. For all datasets, the latent model dimensionality of the neural
network is set to 512, the number of encoder and decoder layers to 2, and the number of attention heads to 4. The
dropout probability is 0.2 for Bibtex and Reuters, and 0.1 for the other datasets. The significance level of the dependency
test to calculate label graphs’ adjacency matrices is selected to be 0.05. The value of the threshold used to convert soft
prediction to predicted class is determined using the validation sets and optimized individually for all performance
metrics. The model is trained with a batch size of 32, and the Adam [25] optimizer is used to compute gradients and
update parameters with an initial learning rate of 0.0002 and step size 10 for 10% decay rate.

4.4 Results

The results are provided in Table 2. Overall our experiments show that Multi-relation Message Passing (MrMP) yields
better performance than the state-of-art methods most of the time. The value of the multi-relation approach is most
evident in subset accuracy in which MrMP outperforms the baselines by %7 on average. The overall performance
improvements for the ebF1, miF1 and maF1 metrics are also positive, but below 2%. The maF1 improvement is slightly
greater than the miF1 improvement. Comparatively, maF1 focuses more on rare labels; this is in line with the intuition
that the guidance provided by incorporating multiple relations is more useful for labels with low observation frequency.

ML-KNN and ML-ARAM. MrMP yields better results than ML-KNN and ML-ARAM for all metrics since these two
algorithms rely only on clustering of input word embeddings for mapping features to labels, while MrMP employs
a message passing neural network where input word embeddings are mapped to label embeddings via multi-head
attention.

ML-RNN. ML-RNN has the capability of generating input embeddings by taking the sequential nature into account.
By following a prediction path, the algorithm is able to focus on the next probable label given a previously predicted
set of labels. This enhances the capability of capturing the full label subset for each instance, so ML-RNN is most
competitive for the subset accuracy metric. The results on Reuters-21578 show that MrMP outperforms ML-RNN by
5% and 14% in miF1 and maF1 while achieving slightly better subset accuracy. The integration of the MrMP module
with pulling and pushing relations allows the architecture to emulate the advantage of making predictions sequentially,
while enjoying the flexibility and computational efficiency of an MPNN.

LaMP. Comparison to LaMP reveals the true impact of the multi-relation approach in terms of capturing label
dependencies. While our model is most similar to LaMP in terms of the main building blocks of mapping features to
labels, we employ multi-relation GCNs to model label dependencies instead of decoder self attention as in LaMP. The
enhancement of subset accuracy performance compared to LaMP reveals the importance of accounting for the pushing
type of relation between labels.

MPVAE. The comparisons with MPVAE show that multi-head attention based mapping of input to output and multi-
relation based label dependency modelling are more effective than using a multivariate probit model for the mapping
and a global covariance matrix for dependency modelling.

2The reproduced results of MPVAE are in italic font in the tables.

6



Multi-relation Message Passing for Multi-label Text Classification

Pulling Relations Pushing Relations

Figure 2: Ablation study on Reuters-21578 dataset: First, the node degree of labels in each relation graph shown in
figure are calculated by summing the number of edges and the labels are grouped into four. Second, the differences of
AUC between model with and without MrMP are calculated per label. Third, for each label group differences on AUC
score are aggregated by taking average. Between the connected label nodes (have at least 1 edge) It can be observed
that the impact of MrMP module increases by the node degree in pulling and pushing relation graphs. This shows that
the strength of MrMP emerges from modelling complex label dependencies better.

4.5 Ablation

In order to examine the effectiveness of multi-relation module, we perform an ablation study by assessing the perfor-
mance of the proposed architecture with and without the MrMP module. Figure 2 shows the results of this analysis for
Reuters-21578 dataset as an example 3.

4.6 Complexity

Let N represent maximum sequence length, L represent number of labels, R represent number of relations, d and d′
represent hidden dimension and inner model dimension respectively (which we set d′ = 2× d in our experiments). For
encoder we have encoder self attention of O(N2 · d) and positionwise feed forward of O(N · d · d′) per layer, which
reaches to O(N · d · (N + d′)). For decoder we have encoder-decoder attention of O(N · L · d), positionwise feed
forward of O(L · d · d′), and relational module of O(d2 + r · d+ r2) per layer. In our experimental setting the overall
complexity could be simplified to O((N + L) · d2 + (N2 +N · L) · d).

5 Conclusion

In this paper, we propose a Multi-relation Message Passing Network (MrMP) for the multi-label classification problem.
The proposed model can be adapted to any number of relations as long as the prior is known. We consider pulling and
pushing statistical relations between labels and use the Composition-based GCN to learn label embeddings that reflect
these statistical relations. The experiments show that MrMP outperforms state-of-art models in terms of effectively
modelling label dependencies in order to achieve improved classification performance 4.

3AUCj for a label j is calculated by by the area under the Receiver Operating Characteristic (ROC) curve which is plotted by
calculating true positive and and false positive rate for a set of soft prediction conversion thresholds [1].

4The implementation of our method is publicly available at https://github.com/muberraozmen/MrMP
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